Extensions 1→N→G→Q→1 with N=C22 and Q=C7×D8

Direct product G=N×Q with N=C22 and Q=C7×D8
dρLabelID
D8×C2×C14224D8xC2xC14448,1352

Semidirect products G=N:Q with N=C22 and Q=C7×D8
extensionφ:Q→Aut NdρLabelID
C221(C7×D8) = C7×C87D4φ: C7×D8/C56C2 ⊆ Aut C22224C2^2:1(C7xD8)448,874
C222(C7×D8) = C7×C22⋊D8φ: C7×D8/C7×D4C2 ⊆ Aut C22112C2^2:2(C7xD8)448,855

Non-split extensions G=N.Q with N=C22 and Q=C7×D8
extensionφ:Q→Aut NdρLabelID
C22.1(C7×D8) = C7×C4○D16φ: C7×D8/C56C2 ⊆ Aut C222242C2^2.1(C7xD8)448,916
C22.2(C7×D8) = C7×C22.SD16φ: C7×D8/C7×D4C2 ⊆ Aut C22112C2^2.2(C7xD8)448,131
C22.3(C7×D8) = C7×D82C4φ: C7×D8/C7×D4C2 ⊆ Aut C221124C2^2.3(C7xD8)448,164
C22.4(C7×D8) = C7×C22.D8φ: C7×D8/C7×D4C2 ⊆ Aut C22224C2^2.4(C7xD8)448,888
C22.5(C7×D8) = C7×C16⋊C22φ: C7×D8/C7×D4C2 ⊆ Aut C221124C2^2.5(C7xD8)448,917
C22.6(C7×D8) = C7×Q32⋊C2φ: C7×D8/C7×D4C2 ⊆ Aut C222244C2^2.6(C7xD8)448,918
C22.7(C7×D8) = C7×C22.4Q16central extension (φ=1)448C2^2.7(C7xD8)448,144
C22.8(C7×D8) = C7×C2.D16central extension (φ=1)224C2^2.8(C7xD8)448,161
C22.9(C7×D8) = C7×C2.Q32central extension (φ=1)448C2^2.9(C7xD8)448,162
C22.10(C7×D8) = C7×C163C4central extension (φ=1)448C2^2.10(C7xD8)448,170
C22.11(C7×D8) = C7×C164C4central extension (φ=1)448C2^2.11(C7xD8)448,171
C22.12(C7×D8) = C14×D4⋊C4central extension (φ=1)224C2^2.12(C7xD8)448,822
C22.13(C7×D8) = C14×C2.D8central extension (φ=1)448C2^2.13(C7xD8)448,834
C22.14(C7×D8) = C14×D16central extension (φ=1)224C2^2.14(C7xD8)448,913
C22.15(C7×D8) = C14×SD32central extension (φ=1)224C2^2.15(C7xD8)448,914
C22.16(C7×D8) = C14×Q32central extension (φ=1)448C2^2.16(C7xD8)448,915

׿
×
𝔽